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 is more important in affecting the slope than is the a dependence of k/(aC). Figures
 8 and 9 also indicate that the reaction order with respect to oxygen partial pressure
 is much higher (about unity from the results of Figure 8, with its approximations)
 than with respect to H+ ion activity.
 Figure 6 shows that V decays to potentials positive of Vss, this amount increasing

 with the amount of elongation of the electrode. The present model attributes this
 phenomenon to an accelerated oxygen reduction on the undisturbed oxide sites
 during the decay, induced by the greater negative charge on the metal side of the
 double layer than existed before the electrode was deformed. This same reaction
 on the unbroken oxide areas is the reason for Vmax and Vh being dependent on oxygen
 partial pressure (cf. Fig. 2a) whereas Hagyard. and Williams' found these potentials
 to be independent of Po,.
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 calculations and in preparation of the drawings and manuscript.
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 in which the aluminum was first oxidized in air for various times, t, and then immersed in an
 aqueous solution. The potential in solution was measured before any further oxidation could
 occur. The V versus log t (time of air oxidation) slopes were found to be 0.1-0.2 volts.

 THE INDEPENDENCE OF THE CONTINUUM HYPOTHESIS, II*

 BY PAUL J. COHENt

 DEPARTMENT OF MATHEMATICS, STANFORD UNIVERSITY

 Communicated by Kurt Gidel, November 27, 1963

 This paper is a continuation of reference 1, in which we began a proof of the fact
 that the Continuum Hypothesis cannot be derived from the other axioms of set
 theory, including the Axiom of Choice. We use the same notation as employed in
 reference 1.

 THEOREM 2. 91 is a model for Z-F set theory.
 The proof will require several lemmas. The first two lemmas express the princi-
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 ple that forcing is a notion which is formalizable in the original model 21t.
 LEMMA 6. There is an enumeration a, of all limited statements by means of the

 ordinal numbers of MX, such that the usual formal operations performed on statements
 are expressible by means of definable functions in M11 of the indices a, for example,
 forming negations, conjunctions, replacing variables by particular sets, etc. Further-
 more, the ordering corresponds to the definition of forcing given by transfinite induction
 in Definition 6.

 LEMMA 7. Let a(x,y) be a fixed unlimited statement containing two unbound vari-
 ables x and y. The relation Ia(P, a,3) which says that P forces a(Fa,Fp) and 3 is the
 least such ordinal, is definable in 1.

 This follows from the fact that using Lemma 6 the relation "P forces a," can be
 formalized in Z-F as a statement about P and a. A given unlimited statement can
 also be handled since, after a finite number of replacements of variables, it is re-
 duced to a limited statement.

 Definition 9: For a(x,y) as above, put F5(oa) = sup{313 P,al < a, qa(P,ai,3)}.
 LEMMA 8. Let a(x,y) be a fixed unlimited statement, a an ordinal. For each

 c' < a either there is no Fp such that a(F,,,Fp) or such an Fp exists with 3 < Fr(a).
 Proof: If 3 is the least ordinal such that a(F,F,Fp), then a(F,a,F,) must be

 forced by some Pn which clearly implies 3 < F (a).
 LEMMA 9. Let a(x,y) be an unlimited statement of the form

 QlXlQ2X2, . - ., QnXnb(X,y,Xl, ..., Xn)

 where b has no quantifiers and Qi are either existential or universal quantifiers. In X1,
 assume a defines y as a single-valued function of x. Then for each a there exist ordinals
 Yo, . . ., Yn such that for x e T,, there exist y e FTo such that a(x,y) and for (x,y) in
 T, X T.yo, the statement a(x,y) holds if and only if d(x,y) holds where a is the statement
 formed by restricting the quantifiers Qi in b to range over Fyi.

 Proof: Lemma 8 implies the existence of yo such that for x e Ta, there is a
 y e F^I such that a(x,y). Define y, by induction as follows: let g(x,y,1xl, ...,
 Xk-i,z) be the condition

 (i) if Qk is universal,

 Qk+lXk+l, * ..., QnXnb(x,y,Xi, . ., X k-,,lXk+l ... Xn) 0o

 (ii) if Qk is existential,

 Qk,:+lk'+1, .. , QnXnb(x,y,Xl , .. ., Xk-,_l,XZ,X ... X,).

 Lemma 8 implies that for some 'Yk, for all (x,y,x], . . ., X-_) e T71 X F',o X ... X
 F'Y_,, either no z exists such that g,(x,y,xi, .. ., k-i,z) or there is such a z e Fa,.
 This clearly implies the lemma.

 LEMMA 10. The Axiom of Replacement holds in Z1.
 Proof: If a(x,y) defines y as a single-valued function of x in 1, then for any a if

 D = {x13z, z e Fa & a(z,x)} then by Lemma 9, D is defined by a condition in which
 all variables are restricted to lie in fixed sets F~i, which by the definition of the sets
 Fa implies that D is a set in 01.

 The only other axiom to verify which is nontrivial, is the Axiom of the Power Set.
 The proof we give follows closely the method in reference 2 used to prove that V = L
 implies the Continuum Hypothesis.

This content downloaded from 
�������������130.102.42.98 on Mon, 13 Dec 2021 17:56:01 UTC������������� 

All use subject to https://about.jstor.org/terms



 VOL. 51, 1964 MATHEMATICS: P. J. COHEN 107

 LEMMA 11. Let W be a set in f1, consisting of conditions P, such that if P1 and P2
 belong to W, then Pi U P2 is not an admissible condition (i.e., contains a contradic-
 tion). Then W is a countable set (in o1).
 Proof: Define sequences nk and Pj as follows. Put n == I and Pi the first P in

 W. (We assume the P are well-ordered.) If nk and Pj for j < nk are defined, put
 Rk equal to the set of all conditions n e aa or -n e as such that they or their negations
 are contained in some Pj, j < n,. Let Pj, nk < j < nk+l, be finitely many P in W,
 such that for all P in W, 3j, nk < j < nk+tl and P and Pj have precisely the same
 intersection with Rk. This is possible since Rk is a finite set. We claim that W
 consists only of the Pj. For if P e W, then since P is a finite set of conditions, and
 Rk C Rk+l, there exists a k such that P n R, == P n R?+i. Let nk < j < n+l,
 such that Pj n Rk = P n Rk. Then if P is not equal to Pj, since P n Rk+l C Pj
 and Pj C R7:+i, P U Pj is an admissible condition, which contradicts the hypothe-
 sis.

 Definition 10: Put C(P, ) = 3 if P forces .F e Fa and for P' D P, 7 < /, P'
 does not force FT e F,. If no such 3 exists, put C(P,ca) = 0.

 The function C is definable in Mi, by virtue of the general principle contained in
 Lemma 6.

 LEMMA 12. For any a, there are only countably many (in 11) 3 such that for some
 P, C(P,ca) = 3.

 Proof: For each such 3, pick one P such that C(P,a) = F. Then the set of all
 such P must be countable by Lemma 10.

 LEMMA 13. Let S be an infinite set of ordinals in M1. There exists a set S' of
 ordinals, S' D , S' = S such that S' is closed under J(i,ca,,'y), Ki(a), C(P,a), I(a),
 for all P and a, , , E S. Also a e S' implies a + 1 eS'.

 The statement S' = S, above, means that with respect to M7, the sets S and S'
 are of the same cardinality.

 LEMMA 14. Let S be a set of ordinals closed under the operations in Lemma 13, and
 such that if a < 38 ,, a e S. Then there is a map g mapping S 1-1 onto an initial
 segment of ordinals which preserves J, K1, I, N, and such that if N(a) = 0 (or 9),
 g(a) = 3 is the first ordinal such that N(3) = 0 (or 9) and 3 is greater than g(a') for
 a' < o. Also, g is the identity for a < 3N,.

 Proof: S and g in the lemma refer to sets in the model 17. We define g by
 transfinite induction. For a < 3r, let g be the identity. If g is defined for all 3
 in S less than a, if I(a) == a (i.e., N(a) = 0), put g(o() = sup{g(3)l/3 < a and 3 e S}.
 If I(a) = 0 < a, then if N(a) = 9 (i.e., a =: + 1), put g(a) = g(/) + 1. If
 i = N(a), 1 < i < 8, put g(ac) = J(i,g(Ki(a)), g(K2(a)), g(3)). One can now show
 by induction that if a e S, N(a) = 0, g maps the set of all / < a onto an initial seg-
 ment. The lemma then easily follows.

 LEMMA 15. If we put G(F,) = Fg(a) for a in S, then G is an isomorphism with
 respect to e of A1 = {Fa c e S} onto A- = {F Fg(\)L e. S}.

 Proof: This follows by induction on a, in the same way as in 12.6 of reference 2.
 Observe that in examining the operations 54 and 53 we need the fact that if F,e A1
 and is not empty, then it has a member in Al preceding it. This is true since S is
 closed under C(P,a), anid C(P,a) for some P is the smallest 3 for which Fpe Fa,
 if F, # 5 .

 LEMMA 16. If Fp C Fa, then J'or some 7, F 0= Fr, where -y < a + , in 1i.

This content downloaded from 
�������������130.102.42.98 on Mon, 13 Dec 2021 17:56:01 UTC������������� 

All use subject to https://about.jstor.org/terms



 108 MATHEMATICS. P. J. COHEN PROC. N. A. S.

 Proof: Let S contain all S6 < a, all a < 3R, and 3, and be closed under the opera-
 tions in Lemma 13. Let g be the corresponding isomorphism. Then clearly
 g(/) = 5 if 6 < a. Thus, by Lemma 15, if we put 7 = g(/), since Fp C F,,, F=
 F1J. Since g maps S onto an initial segment, -y < S and so the lemma is proved.
 LEMMA 17. The Axiom of the Power Set holds in 01.
 Proof: Since every subset of F, is contained in Fp, where 3 is the first ordinal

 such that N(3) = 0 and A > a + N,, it is clear that the power set of F, occurs in 0.
 This completes the proof that 91 is a model, the other axioms being trivially veri-

 fied. Since rank F, < a, 1 contains no new ordinals.
 LEMMA 18. If N(ca) = N(3) = 9, and F, > Fp in 17, then F, > Fp in 1.
 Proof: The point of this lemma is that ordinals do not change their relative

 cardinality in the model 01. The added complications in the definition of forcing
 due to N(a) = 9 are compensated for in the proof of this lemma, in that as a runs
 through the ordinals with N(a) = 9, F, runs through the ordinals of 911 in a manner
 independent of the sequence Pn. More exactly, the map a -- F, is an order-
 preserving map of the ordinals a, N(a) = 9, onto all the ordinals of 1I1.
 Thus assume that some element in 01 defines a relation <p(x,y) on Fp X F, which

 is a single-valued function from F0 onto F,. For each /' < /, N(/') = 9 consider
 the set Ha, of all y, N(7) = 9, such that some P forces both ((F0,,F7) and (x) [<p(F0,,x)
 -* x = FT ]. The set H0, exists in 1 as does the map 3' -- H0, since the notion of
 forcing is expressible in 11Z. We shall now show that each HA, is countable in M11.
 For each element in H0, choose a corresponding P which forces the above state-
 ments. By Lemma 11, it is sufficient to show that these P are mutually incom-
 patible. If two such P corresponding to y7 and 72 were compatible, their union
 would force both o(Fp,,F,t) and (x) [p(F,,x) -- x = F,,]. Now since -FU =
 F,2 is forced, taking into account that -F,0 = F2 involves only existential quan-
 tifiers, it follows that -(P(F0,,F1) -- FT, = F2,) is forced, which is a contradic-
 tion. Thus the union of all the H0, is of cardinality Fp in 17, since we may clearly
 restrict ourselves to the case where Fp is infinite. If in 91, (p(F,,F,) holds for some
 a, N(y) = 9 then since all true statements in 91 are forced by some P, y belongs to
 Ht,. Thus since o( is onto, the union of H0, must contain all 7 < a, N(7) = 9 which
 is impossible since Fp < F, in S1.
 LEMMA 19. There is a statement a(x,y) built up from the logical symbols and the

 set V, which expresses in 1 the condition that x is an ordinal and Fx == y. Thus the
 Axiom of Choice holds in 01.
 Proof: This is true because our construction differs from that of reference 2,

 merely in the introduction of the sets aa. If we use the set V, we can of course de-
 scribe their ordering and so define the construction. We can thus well-order 01 by
 saying F, precedes Fp if a < 3 and Fa FT for y < 3.
 LEMMA 20. In 01, we have Nr < 2*? < tT+1.
 Proof: By Lemma 18, the sets Ax do not change in 1. One can easily see that

 no P forces any two a, to be equal, hence they are distinct, which implies one half
 of the lemma. Our proof of the Power Set Axiom shows that every subset of w is
 some Fa with a < r, or a < [,r. Thus Lemma 19 establishes a map of N,+ onto
 20.

 We have now completed the proof of part 3 of Theorem 1. We now sketch the
 proof of one of the finer points involved.
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 LEMMA 21. If in 20 1T is not the sum of countably many smaller cardinals, then
 2s? = q, in the model 0. If it is, then 2?' = ,=T+1.
 Proof: The second part follows from Lemma 20, and the theorem of Koenig

 which says that the continuum is not a countable sum of smaller cardinals. Let
 F, c co. To prove the first part, let S be a set of indices containing all / < o, the
 ordinal a, and closed under J, Ki, I, + 1, and C as before, and such that S = 0o.
 The set S is definable in 1T1 by virtue of the general principle of Lemma 6. For 3 in S
 define a new collection of sets Gp, defined by induction on / as follows. If / < 3 r,'
 G, = F0. If N(A) = 0, put GT = {G0,j/' < /}, and if N(/) = 9, G { = {Gel' <
 / & N(/') = 9}. If 1 < i = N(3) < 8, K1(/3) = 71, K2(/) = 72, put Gp = 5i(G,,
 G,2). Then the correspondence F0 -- Gp is an isomorphism with respect to e.
 Clearly, F, = G,. Let p be an isomorphism with respect to e of S onto a countable
 ordinal S'. Let Ki' = pKip-l, and N' = Np-l. Then our argument shows that
 Fa depends only upon S', Ki', N', p(a), and the set S n 3 K,. The number of pos-
 sible S' is 1i. For each S', the number of possible Ki' and N' is [i, since 0o 0=-
 [, in 21r and Ki', N' are definable in M1Z. The number of countable subsets of 3 1T
 is of cardinality q,, as follows easily from our hypothesis on NR and the fact that the
 Generalized Continuum Hypothesis holds in 11Z. Thus the number of possible F,
 does not exceed N, and the lemma is proved.

 LEMMA 22. If in M1 the number of subsets of X of cardinality 1i is a,, then 2N' =
 X in S.

 Proof: This is very similar to Lemma 21. 'We merely demand that S contain all
 3 < 1i. The condition of the lemma may be rephrased by saying N, is not cofinal
 with No or 1. In particular, r may be 2.

 This settles an old question of Lusin whether one can have 2s? = 2N'. Other
 examples of this type presumably can be constructed with our method. In par-
 ticular, one can construct models in which the set of constructible reals is countable,
 a countable union of countable sets is uncountable, etc.

 We now give a short discussion of the question of how the above proof can be
 formalized. Let us denote by (Z-F)' the axiom system obtained by adjoining to
 Z-F the axiom:

 There exists a set M1 which is a model for Z-F.

 Observe that this axiom can be expressed as a single statement about 17, because
 11 is a set. In the axiom system of G6del-Bernays this would be still simpler, since
 only finitely many axioms are employed there. The classic argument of G6del2
 shows that from (Z-F)' one can deduce the existence of a set 91 which is a model for
 Z-.F and V = L. Similarly, the argument of this paper shows that (Z-F)' implies the
 existence of a set M0, which is a model for Z-F:, the Axiom of Choice, and the nega-
 tion of the Continuum Hypothesis. Since our additional axiom is quite readily ac-
 ceptable to most mathematicians (being merely a formal expression of the L6wen-
 heim-Skolem principle, and implied by well-known axioms such as the Axiom of an
 Inaccessible Cardinal), one can regard the unprovability of the Continuum Hy-
 pothesis as firmly established. However, the consistency of a formal system can
 also be regarded as a statement in elementary number theory, and one may ask for a
 proof within elementary number theory of various implications. If (Z-F)i denotes
 Z-F with the Axiom of Choice and say 2N? = R, the relevant question is, can we
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 prove within number theory or, if need be, a system of higher type, the implication
 Con(Z-F) -- Con(Z-F)i. By using rather standard methods, we shall show how to
 prove the above implication purely within elementary number theory.
 Let us enumerate the axioms of Z-F, An. For each n, there is in Z-F a proof of

 the existence of a countable set ,n which satisfies the axioms Aj, j < n. Further-
 more, the correspondence between n and the string of symbols corresponding to
 such a proof is expressible in number theory.
 We may also assume by reference 2 that the axiom V = L is valid in 9r,. We

 now assert that the proof that 0 is a model for Aj, j < p as well as 2U? = ca can
 be given under the assumption that 17 is a set satisfying Aj, for j < n where n is a
 suitable number greater than p, but still an arithmetical function of p. To see this,
 we observe that the notion of forcing for limited statements can in Z-F be formu-
 lated for unlimited statements as well and the basic lemmas may be proved, since
 no special properties of 1 are used except the transitivity of 17. To prove that
 the axioms of Z-F other than the Replacement Axiom holds in 01, as well as 2?: =
 N, requires only finitely many axioms to hold in 1. Each instance of the Replace-
 ment Axiom to be proved in 91 requires that a finite number of instances of replace-
 ment used in the proof of Lemma 8 hold in 21. Which instances are sufficient is a
 simple function of the number of logical symbols used in the formula a(x,y) dis-
 cussed. Since any contradiction in (Z-F) would involve only finitely many axioms
 and since we can prove the existence of a set 01 satisfying these axioms, we would
 thus be led to a contradiction in Z-F itself. This mapping from contradictions in
 (Z-F)i to contradictions in (Z-F) is expressible in an elementary number-theoretic
 manner which is what was to be proved. In general the statement 2'? = N,, for
 r in M1I, may not be capable of being expressed as a statement in Z-F or may have
 different interpretations in different countable models 11Z or 01. If T is a particular
 natural number or o +- 1, etc., then it can readily be expressed in Z-F and the proof
 sketched goes through.
 The argument given in this paper to establish the independence of the Con-

 tinuum Hypothesis will certainly carry over if one adjoins to Z-F the Axiom of an
 Inaccessible Cardinal. It seems probable to the author that the addition of any
 axiom of infinity, as the term is presently understood (i.e., of axioms such as those
 introduced by P. Mlahlo and A.zriel Levy), will not alter the situation.

 The author wishes to express his gratitude to Professor Kurt G6del for his many helpful sug-
 gestions during the preparation of this manuscript, and for correcting several weak points in the
 previous exposition. We also would like to thank Professor Solomon Feferman for pointing out,
 after the author had shown 2t? = s2 in 1, that probably 2:1 = N2 would hold as well, thus resolving
 Lusin's problem.

 * The results of this paper first appeared in April 1963 as a set of notes multilithed at Stanford
 University, and were presented at a lecture in Princeton at the Institute for Advanced Study on
 May 3, 1963.
 t The author is a fellow of the Alfred P. Sloan Foundation.
 1Cohen, P. J., "The independence of the continuum hypothesis," these PROCEEDINGS, 50,

 :1143 (1963).
 2 Godel, K., The Consistency of the Continuum Hypothesis (Princeton University Press, 1940).
 3 The definilion of I in Lemma 1 is to be supplemented by the stipulation:

 I(j(a)) = I(j(a) + 1) = j(a).
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